Tranzystory unipolarne

Tranzystory unipolarne

Tranzystory unipolarne, zwane też polowymi, stanowią podstawę całej współczesnej techniki półprzewodnikowej. To właśnie one „napędzają” silniki przemysłowe dużej mocy, pracują jako klucze w przetwornicach DC/DC komputerowych płyt głównych, czy wreszcie – tworzą struktury wielordzeniowych procesorów oraz innych układów cyfrowych o wielkiej skali integracji. Ogromne zalety tranzystorów polowych sprawiają, że coraz trudniej dziś znaleźć urządzenia bazujące na tranzystorach bipolarnych. Warto jednak pamiętać o istotnych ograniczeniach i wymaganiach układowych, których spełnienie jest niezbędne do prawidłowego wykorzystania tych elementów w nawet najbardziej wymagających aplikacjach.

Czytaj więcej

Tranzystory unipolarne JFET – rodzaje i zasada działania

Podstawowy podział tranzystorów polowych wynika z konstrukcji ich struktury półprzewodnikowej – to właśnie od niej zależą bowiem charakterystyki i zasada działania elementów. Dawniej chętnie stosowane były tranzystory polowe złączowe (JFET), w których maksymalna wartość prądu drenu występowała dla zerowego napięcia bramka-źródło. Wzrost napięcia na bramce powodował spadek prądu drenu, aż do niemal całkowitego zatkania tranzystora. Elementy JFET były chętnie stosowane w urządzeniach wysokiej częstotliwości, a także we wzmacniaczach o wysokiej impedancji wejściowej. Dziś tranzystory tego typu coraz rzadziej spotkać można jako elementy dyskretne, choć nadal bardzo cenne dla współczesnej techniki analogowej są wzmacniacze operacyjne z wejściami JFET – niewielkie prądy polaryzacji oraz niezrównoważenia pozwalają na realizację różnego rodzaju użytecznych układów, np. wzmacniaczy transimpedancyjnych czy też wtórników napięciowych. W literaturze znajdziesz też liczne przykłady układów próbkująco-pamiętających, opartych właśnie o klasyczny, unipolarny tranzystor JFET.

Tranzystory MOSFET – sterowanie i praktyczne konsekwencje pojemności bramki

Modyfikacja struktury krzemowej tranzystora przez oddzielenie bramki za pomocą nieprzewodzącej warstwy tlenku metalu doprowadziła do stworzenia tranzystorów MOSFET (ang. Metal-Oxide Semiconductor Field-Effect Transistor). Tranzystory z tej grupy cechują się bardzo niskimi wartościami statycznego prądu bramki (sterowanie obwodem dren-źródło odbywa się poprzez zmianę napięcia pomiędzy bramką, a źródłem), doskonale sprawdzają się zatem jako budulec cyfrowych układów scalonych. Nie należy jednak zapominać, że nieprzewodzący charakter tlenku metalu powoduje, iż obwód bramka-źródło widziany jest przez zewnętrzny układ jako relatywnie spora pojemność. Dla tranzystorów o dopuszczalnej mocy strat rzędu kilkuset watów wynosi ona zwykle kilka, a nawet kilkanaście nanofaradów. Choć sytuacja taka może się wydawać problemem pomijalnym, to w rzeczywistych układach pracujących impulsowo (np. w kontrolerach PWM, stosowanych do sterowania napędów elektrycznych) konieczne jest uwzględnienie specjalnych, scalonych sterowników bramek. Mają one za zadanie zapewniać odpowiednio dużą wydajność prądową, niezbędną właśnie do przeładowania pojemności bramkowych tranzystorów.

Zalety tranzystorów MOSFET

Tranzystory unipolarne MOSFET posiadają szereg praktycznych zalet, które pozwalają na stosowanie tych elementów w układach przełączających dużej mocy. Jedną z najważniejszych jest możliwość uzyskania niezwykle niskiej wartości rezystancji obwodu dren-źródło – o ile tylko bramka tranzystora zostanie wysterowana odpowiednio wysokim napięciem, uzyskanie rezystancji obwodu „wyjściowego” tranzystora na poziomie pojedynczych miliomów nie będzie stanowiło najmniejszego problemu. Właśnie z tego względu dyskretne MOSFET-y są chętnie używane w sterownikach silników i innych obciążeń indukcyjnych, wydajnych przetwornicach DC/DC o dużej mocy czy też sterownikach oświetlenia. Jedno z bardziej efektownych zastosowań tranzystorów MOSFET stanowią także końcówki mocy wzmacniaczy akustycznych – w ofercie AVT znajdziesz szereg kitów, umożliwiających budowę wysokiej klasy wzmacniacza, bazującego na dyskretnych tranzystorach.